199 research outputs found

    The dust emission of high-redshift quasars

    Full text link
    The detection of powerful near-infrared emission in high redshift (z>5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emission in the rest frame NIR over more local AGN spectral energy distribution (SED) templates. In order to test if this is a result of the very high luminosities and redshifts, we construct mean SEDs from the latest SDSS quasar catalogue in combination with MIR data from the WISE preliminary data release for several redshift and luminosity bins. Comparing these mean SEDs with a large sample of z>5 quasars we could not identify any significant trends of the NIR spectral slope with luminosity or redshift in the regime 2.5 < z < 6 and 10^45 < nuL_nu(1350AA) < 10^47 erg/s. In addition to the NIR regime, our combined Herschel and Spitzer photometry provides full infrared SED coverage of the same sample of z>5 quasars. These observations reveal strong FIR emission (L_FIR > 10^13 L_sun) in seven objects, possibly indicating star-formation rates of several thousand solar masses per year. The FIR excess emission has unusally high temperatures (T ~ 65 K) which is in contrast to the temperature typically expected from studies at lower redshift (T ~ 45 K). These objects are currently being investigated in more detail.Comment: 6 pages, 3 figures, to appear in the proceedings to "The Central Kiloparsec in Galactic Nuclei (AHAR2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope

    Full text link
    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected from the literature, our observations allow for detailed modeling of the broad-band emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots' magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100 MeV up to 100 GeV, and that the spectral break corresponds almost exactly to the proton rest energy of 1 GeV. We argue that the shape of the electron continuum reflects two different regimes of the electron acceleration process at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption effects. In this picture the protons' inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies >100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication in Ap

    Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence

    Full text link
    We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest energy of an accelerated ion and electron, as well as of the characteristic time for conceivable energy restrictions, are systematically presented. We also discuss a feasible method of verifying the theoretical predictions. The strong, anisotropic turbulence reflecting cosmic filaments might be the key to the problem of the acceleration mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV), detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap

    Transitive X-ray spectrum and PeV gamma-ray cutoff in the M87 jet: Electron "Pevatron"

    Get PDF
    We propose a modified version of the X-ray spectral index and an intrinsic cutoff frequency of inverse Compton radiation from the brightest knot of the M87 jet, in conjunction with an application of the new conceptions of injection and diffusive shock acceleration (DSA) of electrons in magnetized filamentary plasma to the specified source. The drop of the X-ray flux density in a transitive frequency region is associated with the interplay of ordinary synchrotron cooling and weaker magnetic fields concomitant with the smaller scale filaments that allow the electron injection, while the radio-optical synchrotron continuum is dominantly established by the major electrons that are quasi-secularly bound to larger filaments. With reference to, particularly, the updated external Compton model, we demonstrate that in the Klein-Nishina regime fading inverse Comptonization, the injected electrons can be stochastically energized up to a Lorentz factor as high as 5×10105\times 10^{10} in the temporal competition with diffuse synchrotron cooling; this value is larger than that attainable for a simple DSA scenario based on the resonant scattering diffusion of the gyrating electrons bound to a supposed magnetic field homogeneously pervading the entire knot. The upper limits of the photon frequency boosted via conceivable inverse Compton processes are predicted to be of the common order of 1030\sim 10^{30} Hz. The variability of the broadband spectrum is also discussed in comparison to the features of a blazar light curve. The present scenario of a peta-eV (PeV; 101510^{15} eV) electron accelerator, the "Pevatron," might provide some guidance for exploring untrod hard X-ray and gamma-ray bands in forthcoming observations.Comment: 34 pages, 6 figures, matches version published in Ap

    Filamentary jets as a cosmic-ray "Zevatron"

    Full text link
    Strong, anisotropic turbulence reflecting magnetized filaments is considered, to model the diffusive acceleration of particles by shock waves in active galactic nucleus jets. We address that at knot A of the nearby M87 jet, the shock involving the filamentary turbulence can accelerate an iron nucleus to zetta-eV (ZeV; 10^{21} eV) ranges. A smaller value of the particle diffusion coefficient is found to be essential to achieve a ZeV cosmic-ray accelerator, a "Zevatron."Comment: 5 pages, 2 color figures, emulateap

    The Apparent Host Galaxy of PKS 1413+135: HST, ASCA and VLBA Observations

    Get PDF
    PKS 1413+135 (z=0.24671) is one of very few radio-loud AGN with an apparent spiral host galaxy. Previous authors have attributed its nearly exponential infrared cutoff to heavy absorption but have been unable to place tight limits on the absorber or its location in the optical galaxy. In addition, doubts remain about the relationship of the AGN to the optical galaxy given the observed lack of re-emitted radiation. We present new HST, ASCA and VLBA observations which throw significant new light on these issues. The HST observations reveal an extrremely red color (V-H = 6.9 mag) for the active nucleus of PKS 1413+135, requiring both a spectral turnover at a few microns due to synchrotron aging and a GMC-sized absorber. We derive an intrinsic column N_H = 4.6^{+2.1}_{-1.6} times 10^{22}cm^{-2} and covering fraction f = 0.12^{+0.07}_{-0.05}. As the GMC is likely in the disk of the optical galaxy, our sightline is rather unlikely (P ~ 2 times 10^{-4}). The properties of the GMC typical of GMCs in our own galaxy. The HI absorber appears centered 25 milliarcseconds away from the nucleus, while the X-ray and nearly all of the molecular absorbers must cover the nucleus, implying a complicated geometry and cloud structure, with a molecular core along our line of sight to the nucleus. Interestingly, the HST/NICMOS data require the AGN to be decentered relative to the optical galaxy by 13 +/- 4 milliarcseconds. This could be interpreted as suggestive of an AGN location far in the background compared to the optical galaxy, but it can also be explained by obscuration and/or nuclear structure, which is more consistent with the observed lack of multiple images.Comment: 27 pages, 8 figures; accepted to A

    Characterization of wetting using topological principles

    Get PDF
    Hypothesis Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young's equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. Theory and Experiments We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. Findings We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.Comment: 11 pages, 9 figures, 1 tabl

    Resistivity due to a Domain Wall in Ferromagnetic Metal

    Full text link
    The resistivity due to a domain wall in ferromagnetic metallic wire is calculated based on the linear response theory. The interaction between conduction electrons and the wall is expressed in terms of a classical gauge field which is introduced by the local gauge transformation in the electron spin space. It is shown that the wall contributes to the decoherence of electrons and that this quantum correction can dominate over the Boltzmann resisitivity, leading to a decrease of resisitivity by nucleation of a wall. The conductance fluctuation due to the motion of the wall is also investigated. The results are compared with recent experiments.Comment: 9 pages, 3 figure

    The Wide Field Imager Lyman-Alpha Search (WFILAS) for Galaxies at Redshift ~5.7: II. Survey Design and Sample Analysis

    Get PDF
    Context: Wide-field narrowband surveys are an efficient way of searching large volumes of high-redshift space for distant galaxies. Aims: We describe the Wide Field Imager Lyman-Alpha Search (WFILAS) over 0.74 sq. degree for bright emission-line galaxies at z~5.7. Methods: WFILAS uses deep images taken with the Wide Field Imager (WFI) on the ESO/MPI 2.2m telescope in three narrowband (70 A), one encompassing intermediate band (220 A) and two broadband filters, B and R. We use the novel technique of an encompassing intermediate band filter to exclude false detections. Images taken with broadband B and R filters are used to remove low redshift galaxies from our sample. Results: We present a sample of seven Lya emitting galaxy candidates, two of which are spectroscopically confirmed. Compared to other surveys all our candidates are bright, the results of this survey complements other narrowband surveys at this redshift. Most of our candidates are in the regime of bright luminosities, beyond the reach of less voluminous surveys. Adding our candidates to those of another survey increases the derived luminosity density by ~30%. We also find potential clustering in the Chandra Deep Field South, supporting overdensities discovered by other surveys. Based on a FORS2/VLT spectrum we additionally present the analysis of the second confirmed Lya emitting galaxy in our sample. We find that it is the brightest Lya emitting galaxy (1 x 10^-16 erg s^-1 cm^-2) at this redshift to date and the second confirmed candidate of our survey. Both objects exhibit the presence of a possible second Lya component redward of the line.Comment: 15 pages, accepted for publication in A&A Replaced with published versio

    The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey

    Get PDF
    (ABRIDGED) We describe the first results of the ALHAMBRA survey which provides cosmic tomography of the evolution of the contents of the Universe over most of Cosmic history. Our approach employs 20 contiguous, equal-width, medium-band filters covering from 3500 to 9700 A, plus the JHKs bands, to observe an area of 4 sqdeg on the sky. The optical photometric system has been designed to maximize the number of objects with accurate classification by SED and redshift, and to be sensitive to relatively faint emission lines. The observations are being carried out with the Calar Alto 3.5m telescope using the cameras LAICA and O-2000. The first data confirm that we are reaching the expected magnitude limits of AB<~25 mag in the optical filters from the blue to 8300 A, and from AB=24.7 to 23.4 for the redder ones. The limit in the NIR is (Vega) K_s~20, H~21, J~22. We expect to obtain accurate redshift values, Delta z/(1+z) <~ 0.03 for about 5x10^5 galaxies with I<~25 (60% complete), and z_med=0.74. This accuracy, together with the homogeneity of the selection function, will allow for the study of the redshift evolution of the large scale structure, the galaxy population and its evolution with redshift, the identification of clusters of galaxies, and many other studies, without the need for any further follow-up. It will also provide targets for detailed studies with 10m-class telescopes. Given its area, spectral coverage and its depth, apart from those main goals, the ALHAMBRA-Survey will also produce valuable data for galactic studies.Comment: Accepted to the Astronomical Journal. 43 pages, 18 figures. The images have been reduced in resolution to adapt to standard file sizes. Readers can find the full-resolution version of the paper at the ALHAMBRA web site (http://www.iaa.es/alhambra) under the "Publications" lin
    corecore